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Abstract Although respiratory syncytial virus (RSV) is responsible for more human deaths each

year than influenza, its pathogenic mechanisms are poorly understood. Here high-resolution

quantitative imaging, bioenergetics measurements and mitochondrial membrane potential- and

redox-sensitive dyes are used to define RSV’s impact on host mitochondria for the first time,

delineating RSV-induced microtubule/dynein-dependent mitochondrial perinuclear clustering, and

translocation towards the microtubule-organizing centre. These changes are concomitant with

impaired mitochondrial respiration, loss of mitochondrial membrane potential and increased

production of mitochondrial reactive oxygen species (ROS). Strikingly, agents that target

microtubule integrity the dynein motor protein, or inhibit mitochondrial ROS production strongly

suppresses RSV virus production, including in a mouse model with concomitantly reduced virus-

induced lung inflammation. The results establish RSV’s unique ability to co-opt host cell

mitochondria to facilitate viral infection, revealing the RSV-mitochondrial interface for the first time

as a viable target for therapeutic intervention.

DOI: https://doi.org/10.7554/eLife.42448.001

Introduction
Respiratory syncytial virus (RSV), an enveloped RNA virus of the Pneumoviridae family, is a leading

cause of serious lower respiratory tract illness in infants and a potent respiratory pathogen in elderly

and immunosuppressed adults (Nair et al., 2010; Hall et al., 2009), leading to more deaths each

year worldwide than influenza. Despite this, there are no effective anti-RSV therapeutics generally

available, with palivizumab (Synagis) and ribavirin the only approved agents as a prophylactic and

therapeutic, respectively, for high-risk patients (Hurwitz, 2011; Hebert and Guglielmo, 1990;

Resch, 2017). Like all pneumoviruses, RSV replicates in the cytoplasm (Collins et al., 2013), but spe-

cific interaction with host cell organelles, and the mitochondria in particular, has remained largely
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unexplored. Unbiased discovery studies capitalising on quantitative proteomic protocols to identify

changes in protein levels upon RSV infection have revealed a significant impact on the abundance of

a number of nuclear-encoded mitochondrial proteins (Munday et al., 2015; van Diepen et al.,

2010; Kipper et al., 2015), including respiratory complex I proteins, outer mitochondrial membrane

complex subunits, voltage-dependent anion channel protein, and the prohibitin subunits that play

essential roles in the regulation of mitochondrial dynamics, morphology and biogenesis

(Kipper et al., 2015). The implication is that RSV may have the capacity to impact host cell mito-

chondrial activities, and in keeping with this, we recently were able to document changes in mito-

chondrial morphology during RSV infection (Hu et al., 2017).

Mitochondria are integral to ATP production and reactive oxygen species (ROS) metabolism in

eukaryotic cells. Oxidative phosphorylation driven by ATP synthase/complex V and the electron

transport chain (complexes I-IV) is responsible for up to 90% of cellular ATP production (Schertl and

Braun, 2014; Letts et al., 2016). The electron transport chain carries out a series of redox reactions,

which are tightly coupled to the generation of mitochondrial membrane potential (Dym) through

proton translocation across the inner mitochondrial membrane to drive ATP synthesis (Schertl and

Braun, 2014; Letts et al., 2016). ROS arising from incomplete electron transfer across complexes I

and III are generally cleared by intracellular antioxidant enzymes under normal conditions

(Schertl and Braun, 2014; Letts et al., 2016), but oxidative stress can occur when ROS production

exceeds antioxidant capacity (Lin and Beal, 2006; Schieber and Chandel, 2014). Changes in cyto-

skeletal organization and/or motor activities can impact mitochondrial distribution and function

because mitochondria are trafficked intracellularly through the action of molecular motors operating

on microtubules and actin filaments (Welte, 2004; Hancock, 2014).

Here the RSV-host interface at the level of mitochondrial organization and function is interrogated

in detail for the first time. A unique combination of redox/membrane potential-sensitive/ratiometric

dyes, direct bioenergetics analyses, and high-resolution quantitative imaging/flow cytometric analy-

sis is used to demonstrate that RSV drives a staged redistribution of mitochondria in microtubule-

and dynein-dependent fashion, concomitant with compromised mitochondrial respiration in infected

cells. Inhibiting RSV-induced changes in mitochondrial distribution both restores mitochondrial respi-

ration, and can protect against RSV infection. Further, we show that RSV’s effects on the mitochon-

dria result in enhanced mitochondrial ROS production; importantly, blocking mitochondrial ROS with

a specific inhibitor significantly reduces RSV replication and titers, and alleviates RSV-induced inflam-

mation in a mouse model. The results highlight RSV’s ability to co-opt the host cell mitochondria to

enhance mitochondrial ROS to facilitate virus production, and establish it for the first time as a viable

target for future anti-RSV strategies.

Results

RSV infection drives mitochondrial perinuclear clustering and
redistribution of mitochondria towards the microtubule organizing
centre (MTOC)
Building on our preliminary observations of altered mitochondrial morphology in RSV-infected cells

(Hu et al., 2017), we first performed high resolution Airyscan CLSM imaging of mitochondria in RSV-

infected cells at 8 hr post-infection (p.i.) (Figure 1A). Mock- and RSV-infected cells exhibited frag-

mented, tubular and fibrillar morphologies as revealed by MitoTrackerRed staining (Figure 1A), with

a higher percentage of infected cells showing fragmented morphology, and a lower percentage with

tubular and fibrillar morphologies, compared to uninfected cells (Hu et al., 2013). Quantitative anal-

ysis confirmed the observations, with a significant (p<0.001)>30% increase of cells showing frag-

mented mitochondrial morphology following infection, compared to mock infected cells (Figure 1B).

Clear differences in mitochondrial distribution between mock- and RSV-infected cells were also

evident, whereby perinuclear clusters of mitochondria could be clearly observed in the infected cells

in stark contrast to the even distribution of mitochondria throughout mock-infected cells

(Figure 1A); dynamic perinuclear clustering in the infected but not non-infected cells could be visual-

ised by live cell imaging (compare Figure 1—videos 1 and 2, where mitochondria are imaged using

the CellLight Mitochondria-RFP BacMam 2.0* system). Quantitative analysis to determine the R90%

parameter, the radius of a circle required to enclose 90% of the MitoTrackerRed fluorescence
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Figure 1. RSV infection induces mitochondrial perinuclear clustering early in infection. A549 cells were mock- or RSV-infected (MOI 1) for the times

indicated, followed by staining for mitochondria (MitoTrackerRed), RSV infection (RSV antibody, green) and nuclei (DAPI, blue). (A) Cells were imaged

by Airyscan super-resolution CLSM. Merge panels overlay all three stains; inset (right panels) corresponds to the boxed regions. Scale bar = 5 mm. (B)

Quantification of mitochondrial morphologies following RSV infection. Cells with predominantly fragmented, tubular or fibrillar mitochondrial

morphologies, defined by width/length ratios of 1:1, 1:3 and 1:10 respectively (Hu et al., 2013) were scored by assessing 25–30 cells per condition on

three independent occasions. Data represent the mean ± SEM; ***p<0.001, **p<0.01, *p<0.05 relative to the mock. (C and D) Cells were imaged by

CLSM. (C) Merge panels overlay all three stains. Scale bar = 10 mm. (D) Perinuclear radial distribution of mitochondria (R90%; see Materials and methods)

Figure 1 continued on next page
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relative to the centre of the nucleus (van Bergeijk et al., 2015), confirmed mitochondrial perinuclear

clustering at 8 and 12 h p.i. (Figure 1C). R90% was significantly (p<0.001) reduced (over 30%) at 8 or

12 h p.i. (Figure 1D) compared to mock-infected cells, confirming RSV-induced perinuclear mito-

chondrial clustering early in infection. Intriguingly, asymmetric mitochondrial distribution was

observed at later time points in infection (18 and 24 h p.i.; Figure 2A). By specifically staining for the

microtubule organizing centre (MTOC) using an antibody against the MTOC component g-tubulin

(highlighted by arrows in the merge panels), we could show that the majority of mitochondria are sit-

uated close to the MTOC at 18 or 24 h p.i. (Figure 2A). This asymmetric distribution was confirmed

by our quantitative analysis of the angular distributions of mitochondrial fluorescence (Figure 2B)

towards the axis of the MTOC (red line); quantitation of mitochondrial staining within 45˚ on either

side of the MTOC revealed significantly (p<0.001) increased (40–50%) levels in infected cells at 18

and 24 h p.i. compared to the mock-infected controls (Figure 1C). To confirm that the effects on

host mitochondria are specific, we also tested for changes in the Golgi apparatus by staining using

the CellLight Golgi-GFP *BacMam 2.0* (Figure 1—figure supplement 1). The Golgi cisterna

remained asymmetrically close to the nuclei in mock- and RSV-infected cells (Figure 1—figure sup-

plement 1), in stark contrast to the striking changes in mitochondria at 8 and 24 h p.i. Together,

these findings indicate that RSV infection specifically reorganizes the host cell mitochondria, with

perinuclear clustering followed by MTOC-oriented asymmetry.

To confirm these results to clinically relevant experimental systems, we explored the impact of

RSV on human airway basal cells using an immortalised human airway basal cell line (BCi) derived

from a healthy non-smoker (NS1) capable of multipotent differentiation and responding to extremal

stimuli (Walters et al., 2013). BCi-NS1 cells were infected with RSV for 18 or 36 h p.i. (Figure 1—fig-

ure supplement 2A). In contrast to the even distribution of mitochondria throughout the mock-

infected cells (Figure 1—figure supplement 2A; first two rows), substantial perinuclear mitochon-

drial clustering was observed in RSV-infected cells at 18 and 36 hr (Figure 1—figure supplement

2A; 3rd and 4th rows), completely consistent with our observations in A549 cells (Figure 1). Quantita-

tive analysis of the R90% parameter (Figure 1—figure supplement 2B) confirmed these observations,

whereby R90% was significantly (p<0.01) reduced (over 30%) in RSV-infected cells at 18 or 36 h p.i.,

compared to mock-infected cells. These results were consistent with the idea that RSV induces peri-

nuclear mitochondrial clustering in a clinically relevant model of human infection.

RSV-induced mitochondrial redistribution is microtubule- and dynein-
dependent
Mitochondrial distribution is known to be controlled by cytoskeletal-associated motor proteins

(Boldogh and Pon, 2007). To test whether RSV-induced mitochondrial redistribution requires an

intact cytoskeleton, we treated infected cells with agents that depolymerize/destabilize the actin or

microtubule networks: cytochalasin D (Figure 1—figure supplement 3A) or nocodazole

Figure 1 continued

was calculated from images such as those in C). Results represent the mean ± SEM for n = 3 independent experiments, each of which analysed 25–30

cells per sample; ***p<0.001, **p<0.01. The dashed line represents the average nuclear radius.

DOI: https://doi.org/10.7554/eLife.42448.002

The following video and figure supplements are available for figure 1:

Figure supplement 1. Lack of impact of RSV infection on the Golgi apparatus.

DOI: https://doi.org/10.7554/eLife.42448.003

Figure supplement 2. RSV infection induces mitochondrial perinuclear clustering in immortalised human airway progenitor-like basal cells.

DOI: https://doi.org/10.7554/eLife.42448.004

Figure supplement 3. RSV-induced mitochondrial perinuclear clustering is independent of actin filaments.

DOI: https://doi.org/10.7554/eLife.42448.005

Figure 1—video 1. Mitochondrial dynamics in mock-infected cells.

DOI: https://doi.org/10.7554/eLife.42448.006

Figure 1—video 2. RSV infection induces perinuclear mitochondrial clustering.

DOI: https://doi.org/10.7554/eLife.42448.007

Figure 1—video 3. Nocodazole blocks perinuclear mitochondrial clustering induced by RSV infection.

DOI: https://doi.org/10.7554/eLife.42448.008
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Figure 2. RSV infection induces asymmetric distribution of mitochondria close to the MTOC later in infection. A549 cells were mock- or RSV-infected

(MOI 1) for 8–24 hr, as indicated, and then stained for mitochondria (MitoTrackerRed), RSV infection (RSV antibody, green), MTOC (g-tubulin antibody,

white) and nuclei (DAPI, blue). Cells were imaged by CLSM. (A) Merge panels overlay all four stains; arrows indicate MTOC. In all panels, scale bar = 5

mm. (B and C) Mitochondrial distribution relative to g-tubulin staining was estimated from images such as those in A. (B) Polar kernel density plot

Figure 2 continued on next page
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(Figure 3A), respectively. Significantly, RSV-infected cells continued to show perinuclear clustering

of mitochondria following treatment with cytochalasin D (Figure 1—figure supplement 3B and C)

but not with nocodazole (Figure 3A, Figure 3 - Figure 1—video 3), confirming that RSV-induced

mitochondrial perinuclear clustering is strongly dependent on the integrity of the microtubule net-

work but not the actin cytoskeleton. Quantitative analysis for the R90% parameter reinforced this

observation that RSV-induced mitochondrial redistribution is microtubule-dependent (Figure 3B).

To test the potential role of microtubule motor proteins, we used the agents EHNA (erythro-9-[2-

hydroxy-3-nonyl]adenine) and monastrol that specifically inhibit dynein-dependent (retrograde) and

kinesin-dependent (anterograde) transport along microtubules, respectively. Neither treatment, in

stark contrast to treatment with nocodazole, impacted the filamentous microtubule network, as indi-

cated by a-tubulin staining (Figure 3A; top four rows), as expected. Strikingly, RSV-induced mito-

chondrial perinuclear clustering was completely abolished by treatment with EHNA but not

monastrol. Quantitative analysis for the R90% parameter confirmed this finding (Figure 3B), indicat-

ing that RSV-induced mitochondrial perinuclear clustering relies on dynein-dependent retrograde

transport along intact microtubules.

To further reinforce the contribution of dynein to RSV-induced mitochondrial perinuclear cluster-

ing, we pretreated cells with small interference RNAs (siRNAs) targeting cytoplasmic dynein

(DYNLT1 or DYNC1H1), as well as controls of siRNA targeting kinesin light chain 1 (KLC1)

(Hirokawa et al., 2009) or scrambled siRNA (scr), prior to virus infection. These treatments resulted

in substantial reductions in the cognate target protein levels (Figure 3C), with no impact on the fila-

mentous microtubule network, as expected (see a-tubulin staining in Figure 3D; top four rows).

Consistent with the effects for EHNA above, RSV-induced perinuclear mitochondrial clustering was

suppressed by depletion of either DYNLT1 or DYNC1H1, resulting in an even distribution of reticular

mitochondria (Figure 3D). In contrast, RSV-induced perinuclear mitochondrial clustering was not

affected by depletion of KLC1 (Figure 3D). Quantitative analysis for the R90% parameter supported

these conclusions (Figure 3E), confirming RSV-induced perinuclear redistribution of mitochondria to

be dynein-dependent.

We extended our analysis to the RSV-induced mitochondrial asymmetry that follows mitochon-

drial perinuclear clustering, finding that nocodazole and EHNA treatments prevent the MTOC-ori-

ented mitochondrial asymmetry characteristic of longer (18 hr) RSV infection (Figure 4A).

Quantitative analysis for the angular mitochondrial distribution (Figure 4B–4C) supported this con-

clusion, results overall demonstrating a dynein/microtubule-dependent mechanism underlying RSV-

induced mitochondrial redistribution during the course of infection.

RSV infection inhibits host mitochondrial respiration dependent on
dynein/microtubule integrity
The striking effects of RSV infection on mitochondrial organization prompted us to evaluate the

impact of RSV infection on mitochondrial respiratory function. We used the Seahorse XF96 Extracel-

lular Flux Analyser to measure oxygen consumption rate (OCR) and extracellular acidification rate

(ECAR) of living cells over the time course (6–24 hr) of RSV infection (Figure 5A), as indicators of

mitochondrial respiration and glycolysis, respectively (Wu et al., 2007). OCR progressively

decreased during the RSV infection (Figure 5A, main panel), and was accompanied by increases in

ECAR (Figure 5A, inset) indicating an inhibition of mitochondrial respiration and a parallel increase

in glycolytic metabolism for energy production. These effects paralleled the robustness of infection,

with increasing multiplicity of infection (MOI) resulting in more severe effects (Figure 5—figure sup-

plement 1A).

These observations were extended by performing successive OCR measurements in the presence

of oligomycin (ATP synthase inhibitor), FCCP (proton ionophore), antimycin A (mitochondrial

Figure 2 continued

showing the frequency of angles of mitochondria-stained pixels from the centre of the nucleus, normalised to the position of the MTOC (red line). (C)

Proportion of mitochondrial signal detected within 45˚ either side of the MTOC was quantitated. Results represent the mean ± SEM for n = 3

independent experiments, each of which analysed 25–30 cells per sample; **p<0.01, ***p<0.001.

DOI: https://doi.org/10.7554/eLife.42448.009
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complex III inhibitor) and rotenone (mitochondrial complex I inhibitor) (Figure 5A, Figure 5—figure

supplement 1A); these are all routinely used inhibitors of specific component of the ETC, enabling

the key parameters of mitochondrial metabolic activity (basal, ATP-linked, maximal and non-mito-

chondrial respiration activities) to be determined (Figure 5—figure supplement 1B). Whilst no sig-

nificant changes were observed within 6 h p.i., we observed significant decreases in maximal OCR

(from 8 h p.i.), basal and ATP-linked OCR (from 18 h p.i.); non-mitochondrial OCR was significantly

increased from 8 h p.i. (Figure 5B). These effects again paralleled the robustness of infection, with

increasing multiplicity of infection (MOI) resulting in more severe effects (Figure 5—figure supple-

ment 1C). Thus, the impact of RSV on mitochondrial respiration was to progressively reduce ATP-

linked and maximal respiratory function over the time course of infection.

To assess the extent to which RSV’s impact on mitochondrial respiratory function is linked to RSV-

induced microtubule-dependent mitochondrial redistribution, we treated mock- or RSV-infected cells

with nocodazole or EHNA for 2 hr and then performed Seahorse OCR and ECAR analyses at 18 h

p.i. (Figure 5C). Strikingly, all respiratory activities (basal, ATP-linked, maximal and non-mitochon-

drial) in the RSV-infected cells treated with nocodazole or EHNA remained unchanged (Figure 5C).

Together, these results show that the RSV-induced changes in host cell respiration activities are

dependent on dynein/microtubules.

RSV infection decreases mitochondrial membrane potential (Dcm) but
enhances mitochondrial reactive oxygen species (ROS) generation to
favour virus production
Mitochondrial respiration is required to maintain mitochondrial membrane potential Dym

(Gottlieb et al., 2003; Dey and Moraes, 2000). To assess how RSV impacts Dym, we infected cells

with eGFP-rRSV that has been engineered to express GFP upon host cell infection

(Webster Marketon et al., 2014) to ensure unambiguous identification of RSV-infected cells and

then stained these cells with the Dym-sensitive dye tetramethylrhodamine ethyl ester (TMRE)

(Dejonghe et al., 2016) for live cell imaging over 6–24 h p.i. (Figure 6). The proton ionophore FCCP

was used as a control to give maximal dissipation of the Dym as indicated by the uniform loss of

TMRE fluorescence (Figure 6A, 2nd row of panels). Lower TMRE fluorescence was observed in RSV-

infected cells at 18 and 24 h p.i., an impact strikingly apparent when infected cells were imaged

alongside non-infected cells in the same field (Figure 6A, 5th and 6th rows of panels). Quantification

of the integrated density of TMRE fluorescence confirmed the results, revealing significantly reduced

(p<0.001) Dym at 18 h p.i. (Figure 6B). To monitor these RSV-induced changes in Dym over the

period of 16–18 h p.i. in real time, we used the photobleach-resistant Dym-sensitive dye tetraphenyl-

ethylene-phenyl-indolium salt (TPE-Ph-In) (Zhao et al., 2015), documenting that TPE-Ph-In fluores-

cence was maintained throughout the 2 hr imaging period in mock-infected cells, but showed a

progressive loss of TPE-Ph-In fluorescence at 16 to 18 h p.i. in RSV-infected cells (Figure 6—figure

supplement 1). Thus, by ~18 h p.i., RSV infection induces a loss of host cell mitochondrial membrane

potential, Dym.

In addition to being critical contributors to ATP generation, mitochondria are important sites of

reactive oxygen species production, with modulation of mitochondrial intracellular location recently

gaining interest as a critical mechanism in intracellular redox signalling events (Murphy, 2009; Mur-

phy, 2012). To monitor mitochondrial redox states at different times p.i. directly, we stained cells

with a reversible sensor of mitochondrial ROS, flavin-rhodamine redox sensor 2 (FRR2) (Kaur et al.,

2016) alongside Mitotracker Deep Red to visualise mitochondrial localization. The oxidised form of

Figure 3. RSV-induced mitochondrial perinuclear clustering is microtubule- and dynein-dependent. A549 cells were mock- or RSV-infected (MOI 3) for 8

hr with the indicated agents added in the last 2 hr: (A and B) the microtubule-depolymerizing agent nocodazole (NCZ, 17 mM), the dynein inhibitor

EHNA (200 mM), the kinesin inhibitor monastrol (Mon, 50 mM), or DMSO as a vehicle control. Cells were then stained for mitochondria (MitoTrackerRed),

RSV (RSV antibody, green), a-tubulin (white) and nuclei (DAPI, blue), and cells imaged by CLSM. (A) Merge panels overlay all four stains. (B) The

perinuclear radial distribution of mitochondria (R90%) was calculated as per Figure 1D, ***p<0.001. (C–E) A549 cells were pretreated (48 hr) with siRNA

(50 nM) for dynein light chain Tctex-type 1 (DYNLT1), dynein cytoplasmic 1 heavy chain 1 (DYNC1H1), kinesin light chain 1 (KLC1), or scrambled control

(scr). (C) Immunoblot analysis for DYNLT1, DYNC1H1, KLC1, or the control a-tubulin, as indicated (40 mg cell lysate protein/lane). (D and E) RSV

infection, immunostaining, and R90% analysis were as per (A and B). In all panels, scale bar = 10 mm.

DOI: https://doi.org/10.7554/eLife.42448.010
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Figure 4. RSV-induced asymmetric distribution of mitochondria is microtubule- and dynein-dependent. (A–C) A549 cells were mock- or RSV-infected

(MOI 1) for 18 hr with the indicated treatments over the last 2 hr as per Figure 3AB, followed by staining for mitochondria, RSV, MTOC and nuclei as

per Figure 2A, and imaging by CLSM. (A) Merge panels overlay all four stains; arrows indicate the MTOC. In all panels, scale bar = 10 mm. (B and C)

Polar kernel density of mitochondrial distribution relative to the MTOC analysed as per Figure 2BC. (C) Proportion of mitochondrial signal detected

within 45˚ either side of the MTOC was quantitated. Results represent the mean ± SEM for n = 3 independent experiments, each of which analysed 25–

30 cells per sample. **p<0.01.

DOI: https://doi.org/10.7554/eLife.42448.011
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Figure 5. RSV infection inhibits host mitochondrial respiration in dynein/microtubule-dependent fashion. Cellular bioenergetic analysis was performed

using the Seahorse XF96 Extracellular Flux Analyser. A549 cells were (A and B) mock-infected for 24 hr or RSV-infected (MOI 1) for 6–24 hr or (C) RSV-

infected (MOI 1) for 18 hr with additions of the microtubule-depolymerizing agent nocodazole (NCZ, 17 mM), or the dynein ATPase-inhibitor EHNA (200

mM) over the last 2 hr. (A) An example of a typical oxygen consumption rate (OCR) obtained in these experiments. OCR was measured in real time

upon sequential additions of ATP synthase inhibitor oligomycin (Oligo, 1 mM), proton ionophore FCCP (1 mM), mitochondrial complex III inhibitor

antimycin A (Anti, 1 mM) and mitochondrial complex I inhibitor rotenone (Rot, 1 mM). Inset: Correlation of OCR, a measure of mitochondrial respiration

and extracellular acidification rate (ECAR), an indicator of glycolysis (R2 = 0.9745). (B and C) Mitochondrial respiration function parameters of basal,

ATP-linked, maximal and non-mitochondrial respiration were determined as per Figure 5—figure supplement 1B. Results represent the mean ± SEM

for n = 3 independent experiments, each performed in triplicate. ***p<0.001, **p<0.01, *p<0.05 compared to the mock-infected cells.

DOI: https://doi.org/10.7554/eLife.42448.012

The following figure supplement is available for figure 5:

Figure supplement 1. Correlation of multiplicity of infection (MOI) and effects on host cell mitochondrial respiration.

DOI: https://doi.org/10.7554/eLife.42448.013
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FRR2 emits at 580 nm much more strongly upon excitation at 514 nm than at 488 nm, further

enabling ratiometric live imaging of mitochondrial ROS production in situ (Kaur et al., 2016). We

treated mock-infected cells with rotenone as a positive control, with strong FRR2 emission in regions

colocalizing with Mitotracker Deep Red (Figure 7A, 3rd row of panels), indicative of high levels of

mitochondrial ROS. To confirm the mitochondrial contribution to this staining, we used the mito-

chondrial ROS scavenger mitoquinone mesylate (MitoQ) (Smith and Murphy, 2010;

Maharjan et al., 2014), which strongly suppresses the actions of rotenone (Figure 7A, 4th row of

panels). FRR2 fluorescence increased in RSV-infected cells, but was also reduced by MitoQ

Figure 6. RSV infection disrupts maintenance of mitochondrial membrane potential (Dym). A549 cells were infected without (mock) or with eGFP-rRSV

(MOI 1) for 6–24 hr, as indicated, followed by treatment with DMSO as vehicle or FCCP (5 mM, 10 min). In all cases, the Dym-sensitive dye

tetramethylrhodamine ethyl ester (TMRE, red; 50 nM) was included for the final 15 min. (A) Cells were imaged live by CLSM. Merge panels overlay

TMRE and GFP. Arrows indicate the eGFP-rRSV-infected cells. In all panels, scale bar is 5 mm. (B) Integrated intensity for TMRE fluorescence was

quantified using Fiji software. Results represent the mean ± SEM for n = 3 independent experiments, each of which analysed 15–20 cells per sample

***p<0.001 compared to the mock-infected cells.

DOI: https://doi.org/10.7554/eLife.42448.014

The following figure supplement is available for figure 6:

Figure supplement 1. RSV infection impairs mitochondrial membrane potential (Dym).

DOI: https://doi.org/10.7554/eLife.42448.015
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(Figure 7A; bottom 4 rows of panels). Ratiometric visualization (I(Ex514)/I(Ex488), right column) indi-

cated that the punctate source of ROS causing FRR2 oxidation corresponded to mitochondria

revealed by Mitotracker Deep Red staining (Figure 7A). Quantitative analysis of the ratiometric

images highlighted the extent of ROS production (Figure 7B), with the results indicating that RSV

infection increases mitochondrial ROS generation significantly (p<0.001) by 18 h p.i.

Flow cytometric analysis can exploit the green and red fluorescence emission by the oxidised

form of FRR2 (Kaur et al., 2016). When we analysed cell suspensions from FRR2-stained mock- and

RSV-infected cells, two distinct populations could be discerned: population one showing both higher

red and green emission indicative of FRR2 oxidation through higher mitochondrial ROS generation

and population two with lower emission (Figure 7C). Compared to mock infection, RSV infection at

8 and 18 hr increased population 1 by about 2- and 8-fold, respectively, with these increases

reversed by MitoQ (Figure 7C). Taken together, the results reveal that RSV infection elevates mito-

chondrial ROS generation.

To visualise intracellular ROS production directly in RSV infection, we stained RSV-infected cells at

different times p.i with the intracellular ROS indicator 2’,7’-dichlorodihydrofluorescein diacetate

(DCF) (Al-Mehdi et al., 2012), again alongside Mitotracker Deep Red to enable visualization of mito-

chondrial localization, and also the Hoechst dye to define cell nuclei. We treated mock-infected cells

with rotenone as a positive control, with strong DCF staining in regions colocalized with Mitotracker

Deep Red (Figure 7D, 2nd row) indicating high levels of mitochondrial ROS. Analysis of RSV-infected

cells revealed higher levels of ROS associated with perinuclear mitochondria at 8 h p.i.; this staining

at 12 h p.i. was still perinuclear, but with intense nuclear staining as well as some diffuse cytoplasmic

staining (Figure 7D). To assess the mitochondrial contribution to this ROS staining, we confirmed

the actions of MitoQ to suppress the actions of rotenone (Figure 7D, 3rd row). We then treated

RSV-infected cells with MitoQ 2 hr before imaging and observed a marked reduction in DCF stain-

ing, suggesting that the ROS generated in the absence of MitoQ in infected cells was largely mito-

chondrial (Figure 7D). Strikingly, when we included nocodazole treatment to prevent microtubule-

dependent mitochondrial clustering upon RSV infection, DCF staining remained largely mitochon-

drial and cytoplasmic and was largely excluded from the nucleus (Figure 7D, bottom row). An impli-

cation of these findings is that mitochondrial perinuclear redistribution is a prerequisite for altering

the oxidative status of the host cell nucleus during RSV infection.

To confirm the physiological relevance of the above results with respect to RSV-stimulated mito-

chondrial ROS production in the context of the RSV infectious cycle, MitoQ was tested for its ability

Figure 7. RSV infection enhances mitochondrial reactive oxygen species (ROS) generation, which favours virus production. (A–D) A549 cells were mock-

infected or RSV-infected (MOI 3) for 8, 12 or 18 h p.i., with the the additions as indicated for the final 2 hr prior to staining: the mitochondrial complex I

inhibitor rotenone (Rot, 0.5 mM), the mitochondria-specific ROS scavenger mitoquinone mesylate (MitoQ, 1 mM), NCZ (17 mM) or DMSO as a vehicle; in

the case of dual Rot/MitoQ addition (Rot + MitoQ), Rot was added 4 hr before staining. (A) Cells were stained for Mitotracker Deep Red (white; 100

nM, 15 min) and the mitochondria-specific ROS probe flavin-rhodamine redox sensor 2 (FRR2, red; 2 mM, 15 min prior to imaging). Colocalization for

FRR2 staining at either Ex488 or Ex514 and Mitotracker Deep Red was >85% (Pearson correlation coefficient; Costes et al., 2004) across all samples

(25–30 cells/sample). The ratiometric output images of I(Ex514)/I(Ex488) (far right) were calculated by pixelwise division of FRR2 emission (580 ± 20 nm)

images acquired using excitation at 514 nm (third column) or 488 nm (second column), and are represented in pseudo-colour (intensity colour key

displayed lower right). Live cell imaging was performed by resonant scanning CLSM. Results are typical of 3 independent experiments. In all panels,

scale bar = 10 mm. (B) FRR2 (I(Ex514)/I(Ex488)) was calculated for the mitochondrial regions defined by Mitotracker Deep Red staining in the I(Ex514)/I(Ex488)
images such as those in (A) using a custom CellProfiler pipeline (see Materials and methods). Results represent the mean ± SEM for n = 3 independent

experiments, where each experiment analysed 25–30 cells per sample, ***p<0.001. (C) FACS analysis from single-cell suspensions stained with FRR2.

Green (540/30 nm) and red (585/42 nm) fluorescence was excited at 488 nm. The percentages of cells (50,000/sample) in populations 1 (high red

emission) and 2 (low red emission) determined using FlowJo are indicated. Results were typical of 3 independent experiments. (D) Cells were stained

with Mitotracker Deep Red as for (A), Hoechst nucleic acid dye (blue; 5 mg/ml) and the cellular ROS indicator 2’,7’-dichlorodihydrofluorescein diacetate

(DCF, magenta; 2.5 mM) over the last 5 min before live cell imaging by CLSM. Merge panels overlay all three stains. In all panels, scale bar = 10 mm. (E)

Mock or RSV-infected (MOI 1) A549 cells were treated with MitoQ (1 mM) for the times indicated, followed by cell lysate preparation, with qPCR and

plaque assay performed to determine viral RNA copy number and infectious virus (plaque forming units pfu ml�1) respectively. Results shown represent

the mean ± SEM from three independent experiments assayed in triplicate. ***p<0.001.

DOI: https://doi.org/10.7554/eLife.42448.016

The following figure supplement is available for figure 7:

Figure supplement 1. The mitochondria-targeted antioxidant MitoQ suppresses RSV replication but not virus spread.

DOI: https://doi.org/10.7554/eLife.42448.017
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to inhibit virus production in A549 cells (Figure 7E). Excitingly, addition of MitoQ at 8 or even 18 h

p.i. had a significant (p<0.001) inhibitory effect, reducing viral genome replication by up to 60% and

infectious virus production by up to 3.5 logs measured at 24 h p.i. (Figure 7E). These results confirm

that mitochondrial ROS production contributes essentially to RSV virus production, and that MitoQ,

as a specific inhibitor of mitochondrial ROS, is a potent inhibitor of RSV infection.

To test if mitochondrial ROS generation contributes to the spread of RSV infection through cell

fusion, we tracked syncytia (multinucleated, fused cells) formation in RSV-infected (MOI 0.3) Vero

cells over 24–48 h p.i. in the presence or absence of MitoQ (Figure 7—figure supplement 1A).

MitoQ was found not to alter the density or size of syncytia formed at 48 h p.i. (Figure 7—figure

supplement 1B), suggesting that mitochondrial ROS generation facilitates infectious virus produc-

tion by promoting viral replication rather than enhancing virus spread to neighboring uninfected

cells through cell fusion.

Mitochondrial redistribution is key to RSV-induced mitochondrial ROS
generation.
Previous studies have indicated that microtubule and dynein are necessary for the formation of RSV

infectious virus filaments (Vanover et al., 2017). To confirm the physiological significance of RSV-

induced mitochondrial redistribution, we tested the effect on RSV infectious virus production in

A549 cells of agents inhibiting mitochondrial distribution and/or ROS production. Treatment with

the microtubule/dynein motor targeting agents nocodazole or EHNA significantly (p<0.05) reduced

(up to 2.5 log) infectious virus production (Figure 8—figure supplement 1A), in contrast to the

actin-targeted agent cytochalasin D or the kinesin-inhibitor monastrol that had no significant effect.

Similarly, siRNA-knockdown of proteins of the dynein complex (DYNLT1 or DYNC1H1), but not the

kinesin complex (KLC1), resulted in significant (p<0.001) decreases in infectious virus production (2–

3 logs) compared to the scrambled siRNA control (Figure 8—figure supplement 1B).

None of the treatments above impacting mitochondrial distribution induced by RSV infection,

apart from nocodazole, impact microtubules directly (see Figure 3AD), implying that mitochondrial

redistribution, rather than the microtubule network per se, is key to RSV infection. To examine this

idea further, we performed knockdown experiments for the mRNA-binding protein CLUH (clustered

mitochondria homolog) (Figure 8A), which plays a key role in mitochondrial distribution indepen-

dent of the microtubule network by facilitating translation of nuclear-encoded mitochondrial genes

close to mitochondria (Wakim et al., 2017; Gao et al., 2014). As observed previously

(Wakim et al., 2017; Gao et al., 2014), CLUH-targeting siRNA but not control scrambled siRNA

induced mitochondrial perinuclear clustering in mock infected cells (Figure 8B; first two rows), with

RSV-infection resulting in only a further slight increase in clustering (Figure 8B; 4th row). This was

confirmed by quantitative analysis for the R90% parameter (Figure 8C). Strikingly, the CLUH knock-

down-induced mitochondrial redistribution resulted in elevated mitochondrial ROS production, as

indicated by strong FRR2 emission in regions colocalizing with Mitotracker Deep Red as revealed by

ratiometric live cell imaging in mock-infected cells (Figure 8D; first two rows); RSV infection further

enhanced the effect (Figure 8D; last two rows). Quantitative analysis of the ratiometric images con-

firmed the results, indicating that depletion of CLUH significantly (p<0.01) increased mitochondrial

ROS levels in mock- and RSV-infected cells (Figure 8E).

Finally, the physiological relevance of these results with respect to the RSV infectious cycle could

be confirmed by showing that siRNA-mediated CLUH knockdown resulted in significantly (p<0.01)

increased virus production (Figure 8—figure supplement 1C), The results overall confirm that mito-

chondrial reorganization, rather than the microtubule network per se, is key to RSV infection,

through its link to mitochondrial ROS production.

To confirm that the various drug and siRNA treatments used above limiting RSV infection do not

do so simply by impacting cell viability, we assessed release of the cytosolic enzyme lactate dehydro-

genase (LDH) into the culture medium, indicative of cell death. None of our drug (Figure 8—figure

supplement 2A) or siRNA (Figure 8—figure supplement 2B) treatments significantly increased LDH

release compared to that of controls in either the absence or presence of infection, consistent with

the idea that all of the treatments affecting RSV virus production did so through specific effects on

mitochondrial distribution/mitochondrial ROS production, rather than as a result of toxicity.

Together, the results indicate that mitochondrial ROS generation facilitates RSV infection, with

RSV infection effectively co-opting mitochondria in a microtubule- and dynein-dependent fashion to
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Figure 8. Knockdown of the clustered mitochondria homolog (CLUH) elicits perinuclear mitochondrial redistribution, elevated mitochondrial ROS

generation, and enhances RSV virus production. (A–E) A549 cells were pretreated (48 hr) with siRNA (50 nM) for clustered mitochondria homolog

(CLUH), or scrambled siRNA control (scr) followed by infection with RSV (MOI 1) for another 24 hr. (A) Immunoblot analysis for CLUH, or the control a-

tubulin, as indicated (40 mg cell lysate protein/lane). (B and C) Immunostaining and R90% analysis were as per (Figure 1C and D). In all panels, scale

Figure 8 continued on next page
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perinuclear/asymmetric mitochondrial distribution that favours reduced mitochondrial respiration

and enhanced mitochondrial ROS production. Blocking RSV induced reorganization of host cell mito-

chondria and increased mitochondrial ROS production thus inhibits RSV infection effectively.

MitoQ protects against RSV infection in primary human bronchial
epithelial cell and mouse models
The results for the A549 human alveolar line indicating that the mitochondrial ROS scavenger MitoQ

can be a potent inhibitor of RSV infection (Figure 7E) were firstly extended by using primary human

bronchial epithelial cells (pBECs) infected with RSV followed by the addition of DMSO (vehicle) or

the mitochondrial ROS scavenger MitoQ for the last 18 hr, prior to assessment of viral replication

and infectious virus production (Figure 8—figure supplement 3). Whereas RSV infection of the vehi-

cle-treated cells resulted in high levels of viral genomes (Figure 8—figure supplement 3A) and

infectious virus titres (Figure 8—figure supplement 3B) at 18 and 36 h p.i., cells treated with MitoQ

showed significantly (p<0.001) reduced numbers of viral genomes (Figure 8—figure supplement

3A;>70%) and infectious virus titres (Figure 8—figure supplement 3B;>4 logs) at both timepoints

p.i. These results were consistent with the idea that elevated mitochondrial ROS is critical for RSV

infection in a clinically relevant human infectious model.

To confirm the contribution of mitochondrial ROS generation to disease in the affected lung in

vivo, we used the established BALB/c mouse model of RSV infection (van Schaik et al., 1998;

Taylor et al., 1984). As previously (van Schaik et al., 1998; Taylor et al., 1984), viral replication

and infectious virus titres peaked at day 5 p.i., declining rapidly at day 7 p.i. (Figure 9AB, black

bars). Mice treated with MitoQ (Figure 9AB, grey bars) showed significantly (p<0.001) reduced (>4

fold) viral replication and infectious virus production compared to the vehicle control for days 4–7

p.i. Importantly, MitoQ treatment resulted in significantly (p<0.001) less dense inflammatory cell infil-

trate (characterised by mononuclear cells and eosinophils) around the bronchial airways

(Figure 9CD) and perivascular regions (Figure 9EF) of the lungs, as revealed by histological section-

ing and objective blind assessment (Ford et al., 2001; Mehra et al., 2012). Consistent with the alle-

viated host response to infection in the case of MitoQ treatment, we observed significantly (p<0.01)

reduced levels of systemic RANTES, a chemokine highly chemoattractant for the inflammatory infil-

trate, upon MitoQ administration throughout (Figure 9G). Taken together, MitoQ treatment sup-

presses RSV infection and decreases virus-induced inflammation in mice, with clear therapeutic

implications.

Discussion
This study shows for the first time that RSV infection co-opts host cell mitochondria to favour infec-

tion; over an 8–24 hr period of infection, RSV progressively impacts the host cell, with mitochondrial

redistribution to a perinuclear location near the MTOC, decreased mitochondrial respiration, a loss

of Dym, and increased mitochondrial ROS generation (Figure 10). These events are dependent on

Figure 8 continued

bar = 10 mm. Results represent the mean ± SEM for n = 3 independent experiments, where each experiment analysed 25–30 cells per sample;

***p<0.001. (D) Cells were stained with Mitotracker Deep Red and the mitochondria-specific ROS probe FRR2 as per Figure 7A. The ratiometric output

images of I(Ex514)/I(Ex488) were calculated as per Figure 7A. (E) FRR2 (I(Ex514)/I(Ex488)) was calculated for the mitochondrial regions defined by Mitotracker

Deep Red staining in the I(Ex514)/I(Ex488) images such as those in D) using a custom CellProfiler pipeline as per Figure 7B. Results represent the

mean ± SEM for n = 3 independent experiments, where each experiment analysed 25–30 cells per sample, ***p<0.001, **p<0.01.

DOI: https://doi.org/10.7554/eLife.42448.018

The following figure supplements are available for figure 8:

Figure supplement 1. Microtubule/dynein-dependent mitochondrial redistribution favours RSV virus production.

DOI: https://doi.org/10.7554/eLife.42448.019

Figure supplement 2. Lack of effect of drug (A) and siRNA (B) treatments used in this study on cell viability.

DOI: https://doi.org/10.7554/eLife.42448.020

Figure supplement 3. Mitochondrial ROS-dependent Effects on RSV Viral replication and infectious virus production in primary human bronchial

epithelial cells (pBECs).

DOI: https://doi.org/10.7554/eLife.42448.021
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host cell microtubule integrity and dynein, implying that this RSV-induced mitochondrial redistribu-

tion is enacted via a dynein-driven/retrograde-directed mode of transport that is central to the

effects on the host cell; our observations that altering microtubule integrity or dynein activity can

block effects of infection on mitochondrial function as well as RSV infectious virus production reiter-

ate that these events are critical to RSV infection (Figure 10). Interestingly, knockdown of the mito-

chondrial biogenesis factor CLUH appears to be able to further enhance mitochondrial ROS

production in RSV infection (Figure 8) and effect a boost in infectious virus production (Figure 8—

figure supplement 1C), implying that CLUH, in contrast to dynein, functions to limit virus-induced

perinuclear clustering (Figure 10). The most striking observation, however, is that the mitochondrial

ROS scavenger MitoQ can markedly reduce viral replication and infectious virus production

(Figure 7E) as well as restore mitochondrial distribution during infection (Figure 7D), clearly impli-

cating RSV-enhanced mitochondrial ROS production as a key contributor to the infectious process.

Most importantly, blocking mitochondrial ROS generation significantly reduced viral replication/pro-

duction and the extent of lung and systemic inflammation in a mouse model (Figure 9), highlighting

the clinical relevance of our findings.

Oxidative stress is known to play a fundamental role in the pathogenesis of RSV-associated lung

inflammatory disease, correlating strongly with disease severity (Hosakote et al., 2009;

Castro et al., 2006). The mechanism by which elevated ROS contributes to RSV infection may in

part relate to effects at the level of the nucleus, with nuclear ROS (eg. see Figure 7D) impacting

host nuclear gene transcription (Munday et al., 2015; van Diepen et al., 2010; Kipper et al.,

2015). Significantly, progressive increases in lipid peroxidation products in parallel with lowered

reduced glutathione levels in RSV-infected airway epithelial cells indicate the increased oxidative

stress in cells following RSV infection (Hosakote et al., 2009). Antioxidants have been reported to

limit RSV infection in cell culture as well as in mouse models (Hosakote et al., 2009; Castro et al.,

2006; Komaravelli et al., 2015; Zang et al., 2011). This study shows for the first time that treat-

ment with an agent specifically scavenging mitochondrial ROS can limit viremia, significantly reduce

levels of RANTES chemokine and ameliorate lung and systemic inflammation (Figure 9), implying

that modulation of oxidative stress in the context of RSV infection can help diminish lung disease.

This is consistent with the work of Castro et al. (2006), who showed that the antioxidant butylated

hydroxyanisole (BHA) can reduce levels of chemokine (RANTES) and lung inflammation in RSV-

infected mice, as well as the fact that antioxidants have been reported to help alleviate symptoms in

paediatric patients with clinical RSV infection (Dowell et al., 1996; Kawasaki et al., 1999). Thus,

mounting evidence highlights the potential of antioxidants to attenuate symptoms and pathology in

RSV infection.

Importantly, the present study uncovers several novel impacts of RSV infection on host cell mito-

chondria that are relevant to future therapeutic approaches. Specifically, the study shows for the first

time that agents that inhibit microtubule-/dynein-dependent mitochondrial redistribution and/or

reduce mitochondrial ROS limit RSV infection, with MitoQ in particular able to decrease viremia and

airway inflammation in mice. Significantly, MitoQ has been safely delivered in oral form to patients

for up to a year as indicated by two phase II clinical trials (Smith and Murphy, 2010;

Maharjan et al., 2014); clearly, the findings introduce the possibility of using MitoQ or a similar anti-

oxidant as an effective anti-RSV agent. Therapeutic modulation of host cell mitochondrial ROS pro-

duction thus presents itself as an exciting possibility to counteract RSV infection.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain
(Respiratory
Syncytial Virus)

RSV A2 strain PMID: 27464690

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, Strain
background
(Respiratory
Syncytial Virus)

eGFP-rRSV PMID: 24418538 Gift from
Michael N Teng,
University of
South Florida

Mouse strain,
(M. musculus)

BALB/c The Jackson
Laboratory

#: 000651

Genetic reagent
(H. sapiens)

DYNLT1 (siRNA) GE Dharmacon,
SMART pool

#: 6993 Used for
transfection (50 nM)

Genetic reagent
(H. sapiens)

DYNC1H1 (siRNA) GE Dharmacon,
SMART pool

#: 1778 Used for
transfection (50 nM)

Genetic reagent
(H. sapiens)

KLC1 (siRNA) GE Dharmacon,
SMART pool

#: 3831 Used for
transfection (50 nM)

Genetic reagent
(H. sapiens)

CLUH (siRNA) GE Dharmacon,
SMART pool

#: 23277 Used for
transfection (50 nM)

Cell line
(H. sapiens)

A549 ATCC CCL-185 Mycoplasma tested
and/or STR profiled

Cell line
(Chlorocebus sp.)

Vero ATCC CCL-81

Cell line
(H. sapiens)

BCi-NS1 PMID: 24298994 Provided by
Alan Hsu,
Philip M Hansbro,
and Peter AB Wark,
University of
Newcastle

Primary
Cells (H. sapiens)

pBECs PMID: 15781584 Provided by
Alan Hsu,
Philip M Hansbro,
and Peter AB Wark,
University of
Newcastle

Antibody Goat polyclonal
anti-RSV

Abcam Cat. #: ab20745,
RRID:AB_777677

IF (1:400)

Antibody Mouse
monoclonal
anti-g-tubulin

Proteintech Cat. #: 66320–1-Ig IF (1:300)

Antibody Mouse
monoclonal
anti-a-tubulin

Santa Cruz Cat. #: sc-5286,
RRID: AB_628411

IF (1:100), WB
(1:5000)

Antibody Rabbit polyclonal
anti-Goat IgG,
Secondary
Antibody,
Alexa Fluor 488

ThermoFisher
Scientific

Cat. #: 11078
RRID: AB_2534122

IF (1:1000)

Antibody Donkey
polyclonal
anti-Mouse IgG,
Secondary
Antibody, Alexa
Fluor 647

ThermoFisher
Scientific

Cat. #: A-31571,
RRID: AB_162542

IF (1:1000)

Antibody Alexa Fluor
488 phalloidin

ThermoFisher
Scientific

Cat. #: A12379,
RRID: AB_2315147

IF (1:1000)

Antibody Mouse
monoclonal
anti-DYNC1H (C-5)

Santa Cruz Cat. #: sc-514579 WB (1:500)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Mouse
monoclonal
anti-DYNLT1
(H-11)

Santa Cruz Cat. #: sc-365567,
RRID: AB_10841719

WB (1:1000)

Antibody Mouse
monoclonal
anti-KLC1 (L2)

Santa Cruz Cat. #: sc-58776,
RRID: AB_784214

WB (1:1000)

Antibody Rabbit
polyclonal
anti-CLUH

ThermoFisher
Scientific

Cat. #: PA5-71324,
RRID: AB_2690757

WB (1:1000)

Antibody Goat polyclonal
anti-Mouse IgG,
HRP Conjugate
Antibody

Promega Cat. #: W4021,
RRID: AB_430834

WB (1:10,000)

Recombinant
DNA reagent

CellLight Golgi-
GFP *BacMam
2.0*

ThermoFisher
Scientific

Cat. #: C10592

Recombinant
DNA reagent

CellLight Mitochondria-
RFP *BacMam 2.0*

ThermoFisher
Scientific

Cat. #: C10601

Commercial
assay or kit

Mouse RANTES
ELISA Kit

RayBiotech Inc Cat. #: ELM-RANTES

Commercial
assay or kit

LDH Cytotoxicity
Detection Kit

Roche Applied
Science

Cat. #:
11644793001

Commercial
assay or kit

TMRE Dym

Assay Kit
Abcam Cat. #: ab113852 Live-cell IF

(50 nM)

Chemical
compound,
drug

Oligomycin Seahorse XF
Cell Mito Stress
Test Kit

Cat. #: 103015–100 SBA (1 mM)

Chemical
compound,
drug

FCCP Seahorse XF
Cell Mito Stress
Test Kit

Cat. #: 103015–100 SBA (1 mM)

Chemical
compound,
drug

Antimycin A Seahorse XF
Cell Mito Stress
Test Kit

Cat. #: 103015–100 SBA (1 mM)

Chemical
compound,
drug

Rotenone Seahorse XF
Cell Mito Stress
Test Kit

Cat. #: 103015–100 SBA (1 mM)

Chemical
compound,
drug

MitoQ Health
Manufacturing,
New Zealand

Gift from Health
Manufacturing,
New Zealand

PA (0.5 mM),
IF (1 mM)

Chemical
compound,
drug

Nocodazole Sigma Cat. #: M1404 PA and
IF (17 mM)

Chemical
compound,
drug

EHNA Sigma Cat. #: E114 PA and
IF (200 mM)

Chemical
compound,
drug

Monastrol Sigma Cat. #: M8515 PA and
IF (50 mM)

Chemical
compound,
drug

Cytochalasin D Sigma Cat. #: C8273 PA and
IF (2 mM)

Software,
algorithm

Application Suite
Advanced
Fluorescence Lite

Leica RRID:SCR_013673 Version: 2.8.0,
Build: 7266

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

ZEN 2 Zeiss RRID:SCR_013672 Blue edition

Software,
algorithm

Fiji Fiji (https://fiji.sc/) RRID:SCR_002285 Version 2.0.0-rc-64,
Build: e0512e3c19

Software,
algorithm

Custom Scripts for
Quantitative
Analysis of
Mitochondrial
Distribution

Programmed
in Python

This paper Quantitative analyses
of mitochondrial
organization
can be
accessed via https://gitlab.
erc.monash.edu.au/mmi/mito
(Schulze, 2018; copy archived at
https://github.com/
elifesciences-publications/mito)

Software,
algorithm

FlowJo Tree Star,
Inc (http://www.
flowjo.com)

RRID:SCR_000410 Version 10.5.3

Software,
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GraphPad Prism GraphPad
Prism (https://
graphpad.com)

RRID:SCR_015807 Version 6

Software,
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CellProfiler Broad Institute
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RRID:SCR_007358 Version 3.1.8
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ThermoFisher
Scientific

Cat. #: M7512 IF (100 nM)

Other Hoechst stain
(33342)

ThermoFisher
Scientific

Cat. #: H3570 Live-cell IF
(1:2000)

Other TPE-Ph-In PMID: 26264419 Gift from
Yuning Hong,
La Trobe University

Live-cell IF
(1:2 mM)

Other DCF ThermoFisher
Scientific

Cat. #: D399 Live-cell IF
(2.5 mM)

Other Mitotracker
Deep Red

ThermoFisher
Scientific

Cat. #: M22426 Live-cell IF
(100 nM)

Other FRR2 PMID:
26865422

Gift from
Jacek L Kolanowski
and Elizabeth J New,
the University of Sydney

Live-cell IF (2 mM)

Other Biomeda
Gel Mount

ProSciTech Cat. #: EMS17985-11

Other DharmaFECT
siRNA transfection
reagent

GE Dharmacon Cat. #: T-2001–04

IF - immunofluorescence, PA- plaque assay, SBA - Seahorse Bioenergetics Analysis, WB - Western blot.

Cell culture, RSV infection and RSV growth
All cells/cell lines were confirmed mycoplasma free by regular testing. They were maintained in a

humidified atmosphere (5% CO2, 37˚C) and passaged (3 day intervals) by dissociation with trypsin-

EDTA (Gibco). A549 cells (human adenocarcinoma alveolar basal epithelial cells) were grown in

Ham’s F-12K (HF-12K) medium containing 2 mM L-glutamine (Gibco), 1.5 gl�1 sodium bicarbonate,

10% heat-inactivated fetal calf serum (FCS; DKSH Australia Pty Ltd) and 100 U ml�1 penicillin and

streptomycin (Gibco). Vero cells (African green monkey kidney epithelial cells) were grown in Dulbec-

co’s modified Eagle’s medium (DMEM, Gibco) containing 2% heat-inactivated FCS. A549 (ATCC:

CCL-185) and Vero (ATCC: CCL-81) lines have been verified by STR profiling.
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Figure 9. The mitochondrial ROS scavenger MitoQ reduces RSV virus production in mice, concomitant with reduced inflammation. BALB/c mice were

intranasally inoculated with 50 ml of 2.5 � 105 pfu of rRSV or an equivalent volume of diluent at day 0 and given water containing MitoQ (500 mM) or

fresh water ad libitum each day. five mice from each treatment group (total of 20 mice) were euthanased on the days p.i. indicated, and samples

collected for analysis. (A and B) One lung from each animal was put into 1 mL of diluent with steel beads and frozen at �80˚C. Lungs were

subsequently homogenised in a tissue-lyser, debris removed by centrifugation and the supernatant used immediately for (A) virus genome analysis by

qPCR and (B) quantification of infectious virus (plaque forming units or pfu/lung) by plaque assay. (C–F) The other lung was fixed in formalin,

embedded in paraffin, sectioned and stained with haemotoxylin and eosin (H and E). (C and E) Representative images (enlarged 400X) are from whole

Figure 9 continued on next page
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Immortalised-non-smoker one basal cells (BCi-NS1) verified by karyotyping were sourced directly

from Walters et al. (2013) and grown in Bronchial Epithelial Growth Media (BEGM, Lonza). Primary

human bronchial epithelial cells (pBECs) were obtained from four healthy individuals who had no his-

tory of smoking or lung disease, had normal lung function, and gave written, informed consent to

participate and have their data published, in accordance with the procedures approved by the Uni-

versity of Newcastle Human Ethics Committee (Project Ref. No. H-163–1205), in keeping with the

guidelines of the National Institutes of Health, American Academy of Allergy and Immunology

(Anonymous, 1991). pBECs were derived by endobronchial brushing during fibre-optic bronchos-

copy and cultured in hormonally supplemented BEGM containing 50 U/ml penicillin and 50 mg/ml

streptomycin (Wark et al., 2005).

Virus stocks were grown in Vero cells as previously (Caly et al., 2016). A549 cells were grown for

12 hr before infection with either RSV A2 (denoted as RSV throughout), or eGFP-rRSV, a recombi-

nant RSV expressing enhanced green fluorescent protein (eGFP) (Webster Marketon et al., 2014)

in 2% FCS/HF-12K medium (multiplicity of infection (MOI) of 1–3). After 2 hr, cells were washed and

media replaced; cells (or medium) at various times post infection (p.i.) were retained for analysis of

cell-associated (or released) infectious virus (plaque forming units) and/or viral genomes (by quantita-

tive PCR) as per (Caly et al., 2016).

Immunofluorescence and confocal scanning laser microscopy (CLSM)
Mock- or RSV-infected A549 cells were stained with MitoTrackerRed CMXRos (M7512, ThermoFisher

Scientific; 100 nM, 15 min) and then fixed, washed and stained using standard protocols (Hu et al.,

2013). Primary antibodies used were: anti-RSV antibody (1:400, ab20745, abcam), anti-g-tubulin anti-

body (1:300, 66320–1-Ig, Proteintech), or anti-a-tubulin (1:100, sc-5286, Santa Cruz), with dye-

tagged secondary antibodies (anti-goat Alexa Fluor 488, 1:1000, A-11055, or anti-mouse Alexa Fluor

647, 1:1000, A-31571, ThermoFisher Scientific) as appropriate. F-actin was stained by Alexa Fluor

488 phalloidin (1:1000, A12379, ThermoFisher Scientific). In all analyses of stained fixed cells, nuclei

were stained by DAPI (1:15,000 in PBS, 10236276001, Sigma). Following mounting onto glass slides

with Biomeda Gel Mount (ProSciTech), imaging was conducted using a Leica TCS SP5 channel confo-

cal and multiphoton microscope (63X objective, oil immersion). Images (512 � 512 pixels, 8- or 12-

bit) were collected and viewed using the Leica Application Suite Advanced Fluorescence Lite Ver-

sion: 2.8.0 build 7266 viewer software. Airyscan super-resolution imaging was performed using the

Zeiss CLSM 800 with Airyscan detector; images (2448 � 2448 pixels, 16-bit) were viewed using the

ZEN 2 (blue edition) software.

Quantitative analysis of mitochondrial morphology and distribution
Mitochondrial morphologies were quantified as described (Hu et al., 2013). Briefly, fragmented,

tubular or fibrillar mitochondrial morphologies were defined by width/length parameters of 1:1, 1:3

and 1:10 respectively. Quantification of each type of mitochondrial morphology in mock- or RSV-

infected cells was assessed by counting 25–30 cells per condition on three independent occasions.

Quantitative analyses of mitochondrial organization and distribution were performed using cus-

tom scripts programmed in Python using numpy (van der Walt et al., 2011), scipy, scikit-image

(van der Walt et al., 2014), matplotlib (Hunter, 2007) and seaborn (Virtanen and Oliphant, 2016;

Waskom et al., 2016; see https://gitlab.erc.monash.edu.au/mmi/mito). To quantify mitochondrial

perinuclear distribution, we measured the R90% parameter, the radius of the circle required to

enclose 90% of the MitoTrackerRed fluorescence relative to the centre of the nucleus (van Bergeijk

et al., 2015); nuclei were segmented by applying a 2-pixel Gaussian filter and an Otsu threshold

Figure 9 continued

lung sections scanned using Aperio ScanScope slide scanner. Scale bar = 100 mm. Inflammatory cell infiltrate surrounds the bronchial airway (marked by

asterisks, (C) or the blood vessels (marked by crosses, (E) in rRSV-infected samples. Each lung was scanned at three different depths. (D and F) Pooled

data for scoring the extent of (D) bronchial and (F) perivascular inflammation. The intensity of inflammation was quantitated double-blind according to

the schema described in Materials and methods (0–9 scale). Quantitation was performed on multiple lung lobes from three different depths of

sectioned tissue. Results represent the mean ± SEM (n = 15). (G) Blood was collected by cardiac puncture. Systemic inflammation was determined by

ELISA for RANTES as described in Materials and methods. Results represent the mean ± SEM (n = 5). ***p<0.001, **p<0.01.

DOI: https://doi.org/10.7554/eLife.42448.022
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(Otsu, 1979) to the DAPI channel (objects < 500 pixels were excluded). Mitochondria were then seg-

mented by applying a 2-pixel Gaussian filter and a Li threshold (Ch and Lee, 1993) to the Mito-

Tracker Red channel (objects < 10 pixels were excluded). Adjacent cells were split using a

Watershed transform where nuclei centroids situated �10 pixels apart were used as markers.

Infected cells analysed were those with mean anti-RSV-Alexa Fluor 488 fluoresence intensity 5–10 A.

U., with manual inspection of the output. The R90% was calculated by creating a Euclidean distance

map using the nuclei centroids, which was masked using the segmented mitochondrial region to

generate a map where the intensity of each pixel represents the distance of that pixel from the cen-

tre of the nucleus (i.e. the radius). A cumulative histogram was then constructed from pixel radial dis-

tances and R90% calculated as the radius within which 90% of the mitochondrial pixels were

contained.

Figure 10. Schematic representation of the progressive host cell changes that favour RSV infection. RSV infection induces changes in mitochondrial

organization with mitochondrial perinuclear clustering early in infection (8–12 h p.i.), followed by asymmetric distribution of mitochondria close to the

MTOC later in infection (18–24 h p.i.); both phases of mitochondrial redistribution (top) are dependent on dynein components (inhibited by siRNAs

directed at DYNLT1 or DYNC1H1), with perinuclear clustering limited by CLUH (siRNA directed at CLUH increases perinuclear clustering, as well as

mitochondrial ROS production and RSV virus production). Accompanying these changes, RSV infection inhibits host mitochondrial respiration, disrupts

maintenance of mitochondrial membrane potential (Dym) and enhances mitochondrial reactive oxygen species (ROS) generation. These events favour

RSV infection as indicated by fact that RSV infectious virus production is decreased by disrupting microtubule organization using nocodazole (NCZ), by

inhibiting the dynein-motor with EHNA, or using the mitochondrially-targeted antioxidant MitoQ.

DOI: https://doi.org/10.7554/eLife.42448.023
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To determine the angular distribution of mitochondrial pixels relative to the MTOC, the g-tubulin

channel was masked using the segmented mitochondrial regions as defined above. A peak detector,

as implemented by the scikit-image peak_local_max function (van der Walt et al., 2014), was used

to identify a single peak within the masked region, the coordinates of which were delineated as the

MTOC. The orientation of each cell was then normalied such that the angle of the line between the

nucleus centroid and the MTOC was equal to 0˚, that is the image was reoriented so that the MTOC

was directly above the centroid of the nucleus. To analyse the angular distribution of mitochondria,

the angle between the nucleus centroid and each pixel classified as mitochondria was calculated and

plotted as a polar kernel density histogram. Finally, the total number of mitochondria classified pix-

els falling within 45˚ either side of the MTOC were extracted and presented as a proportion of total

mitochondria classified pixels.

siRNA interference
A549 cells were transfected using DharmaFECT transfection reagent (GE Dharmacon) in serum-free

HF-12K medium with 50 nM siRNA (GE Dharmacon, SMART pool) targeting either cytoplasmic

dynein 1 heavy chain 1 (DYNC1H1, #1778), dynein light chain Tctex type 1 (DYNLT1, #6993), kinesin

light chain 1 (KLC1, #3831), clustered mitochondria homolog (CLUH, #23277), or scrambled control

siRNA (GE Dharmacon). siRNA-transfected cells were maintained in a humidified 5% CO2 atmo-

sphere at 37˚C for 48 hr before infection.

Immunoblot analysis
Cells were lysed and subjected to SDS-PAGE and immunoblot analysis as described (Hu et al.,

2013). Specific proteins were detected using anti-DYNC1H1 (1:500, C-5, sc-514579, Santa Cruz),

anti-DYNLT1 (1:1000, H-11, sc365567, Santa Cruz), anti-KLC1 (1:1000, L2, sc58776, Santa Cruz), anti-

CLUH (1:1000, PA5-71324, ThermoFisher Scientific) or anti-a-tubulin (1:5000, B-7, sc5286, Santa

Cruz) antibodies, together with anti-mouse HRP-coupled secondary antibody (1:10000, W4021,

Promega).

Assessment of mitochondrial bioenergetics and function
OCR (oxygen consumption rate) and ECAR (extracellular acidification rate) were monitored using the

Seahorse XF96 Extracellular Flux Analyser (Seahorse Biosciences) (Hu et al., 2013). A549 cells were

plated (1 � 104 cells/well, 10% FCS/HF-12K) with or without RSV infection (MOI 1, 2% FCS/HF12K, 2

hr). Before the measurement, cells were washed twice with pre-warmed XF assay buffer (unbuffered

DMEM supplemented with 25 mM glucose, 2 mM L-glutamine and 1 mM sodium pyruvate, pH 7.4)

and then equilibrated in XF buffer (37˚C, 1 hr). Respiratory parameters for basal, ATP-linked, maxi-

mal uncoupled, spare and non-mitochondrial respiration were calculated from OCR in response to

the sequential addition of 1 mM oligomycin (ATP synthase inhibitor), 1 mM FCCP (carbonyl cyanide

p-trifluoromethoxyphenylhydrazone, proton ionophore), and a combination of 1 mM antimycin A

(complex III inhibitor) and 1 mM rotenone (complex I inhibitor), respectively (Hu et al., 2013).

Measurement of mitochondrial membrane potential (Dcm) and ROS
Dym was determined using Dym-sensitive fluorescent dyes. For imaging with tetramethylrhodamine

ethyl ester (TMRE) (Dejonghe et al., 2016), A549 cells were mock- or eGFP-RSV-infected (MOI 1),

with TMRE (ab113852, abcam; 50 nM, 15 min; Ex/Em: 561/565 ± 25 nm) with Hoechst (H3570, Ther-

moFisher Scientific; 5 mg ml�1; Ex/Em: 405/470 nm) added for the last 5 min in the dark before imag-

ing. For live cell imaging, A549 cells were mock- or RSV-infected (MOI 3) then incubated with

tetraphenylethylene-phenyl-indolium salt (TPE-Ph-In) (2 mM, 30 min; Ex/Em: 488/680 ± 25 nm)

(Zhao et al., 2015) in the dark before imaging over 16–18 hr. To minimize phototobleaching and

phototoxicity to cells during imaging, measurements of Dym and ROS were performed using a

CLSM with 8 kHz resonant optical scanners (resonant scanning CLSM) for image resolution (512 �

512 pixels, 12-bit). TMRE fluorescence intensity was quantified from 15 to 20 cells in each treatment

condition using Fiji (https://fiji.sc/).

Intracellular ROS production was visualised using dichlorodihydrofluorescein diacetate

(H2DCFDA/DCF, D399, ThermoFisher Scientific) (Al-Mehdi et al., 2012). A549 cells were mock- or

RSV-infected (MOI 1), or treated with rotenone (0.5 mM, 30 min), and treated with or without MitoQ
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(provided by Health Manufacturing, New Zealand [Smith and Murphy, 2010; Maharjan et al., 2014;

1 mM, 2 hr]), nocodazole (17 mM, 2 hr) or DMSO (vehicle) as a control. Cells were then incubated

with Mitotracker Deep Red (M22426, ThermoFisher Scientific; 100 nM, 15 min; Ex/Em: 633/665 nm),

with Hoechst and DCF (2.5 mM; Ex/Em: 496/517–527 nm) added at the last 5 min in the dark before

imaging using resonant scanning CLSM over 8–18 hr.

Mitochondrial ROS was detected using the mitochondria-targeted ROS sensor, flavin-rhodamine

redox sensor 2 (FRR2). A549 cells were mock- or RSV-infected (MOI 1) or treated with rotenone (0.5

mM, 30 min), MitoQ (1 mM, 2 hr) or DMSO (vehicle) as a control. Mitotracker Deep Red and FRR2 (2

mM, 15 min) with Hoechst (5 mg ml�1) were added in the last 5 min before live cell imaging using res-

onant scanning CLSM at 8 or 18 hr. The ratiometric output of FRR2 (Kaur et al., 2016) (I (Ex514)/I

(Ex488); the ratio of the intensity of red emission [denoted as I] at 580 ± 20 nm upon excitation [Ex] at

514 nm versus 488 nm) serves a marker for mitochondrial ROS accumulation. Ratiometric I (Ex514)/I

(Ex488) images were generated by pixel-wise division of the 514 nm and 488 nm emission image chan-

nels using Fiji. For all samples, images were set to 32-bit float precision with a display range of

min = 0.0 and max = 15.0 to facilitate comparison). To quantify the mitochondrial-localized ratio, a

CellProfiler pipeline (http://cellprofiler.org/) was set up, whereby a pixel-wise image of I (Ex514)/I

(Ex488) was derived by pixel-wise division of the emission image channels acquired at 514 nm and 488

nm excitation, and stored as a 32-bit float image. Regions containing mitochondria were then seg-

mented from the MitoTracker Deep Red channel by applying a five pixel Gaussian blur and an Otsu

auto-threshold (Otsu, 1979), and then filtered to exclude all regions smaller than 1000 pixels. Seg-

mented regions were then used to determine the mean ratiometric pixel value using the I (Ex514)/I

(Ex488) image above.

For FACS analysis, cells were trypsinised at different times, centrifuged, resuspended in FACS

buffer (2% heat-inactivated FCS, 10 mM HEPES [(4-(2-hydroxyethyl)�1-piperazineethanesulfonic

acid], 2 mM L-Glutamine, 2 mM EDTA solution) containing FRR2 (2 mM, 37˚C, 15 min), and then ana-

lysed using a BD LSRII flow cytometer. Data analysis was performed using FlowJo software (Tree

Star, Inc).

Mouse model
All experiments were performed in accordance with The ACT Animal Welfare Act (1992) and the

Australian Code of Practice for the Care and use of Animals for Scientific Purposes. The study proto-

col was approved by the Committee for Ethics in Animal Experimentation of the University of Can-

berra (project reference number CEAE 14–15). Groups of 5 BALB/c mice (6–8 weeks old) were

infected intranasally with 2.5 � 105 pfu of recombinant RSV (rRSV) in 50 ml as described

(Foronjy et al., 2014); control mice received 50 ml of viral diluent (mock). All mice were housed in

cages covered with barrier filters and given water containing mitochondria-specific ROS scavenger

MitoQ (500 mM) or fresh water ad libitum every day. Mice were monitored daily for signs of disease

(lethargy, ruffled fur) and weight loss. On days 3, 4, 5 and 7, mice were sacrificed using cervical dislo-

cation. One lung for each mouse was lysed in viral diluent with grinding beads using a TissueLyser II

(Qiagen) for determination of viral genomes (by quantitative PCR) and infectious virus production

(plaque forming units) per lung as per (Caly et al., 2016). The other lung from each mouse was fixed

in formaldehyde, embedded in paraffin, sectioned and stained with haemotoxylin and eosin (H and

E) (Imaging and cytometry Facility, John Curtin School of Medical Research, Australian National Uni-

versity, Canberra). Histological analysis of H and E-stained slides was used to determine bronchial

and perivascular inflammation based on established quantification schema (Ford et al., 2001;

Mehra et al., 2012). Briefly, the intensity of bronchial or perivascular inflammation was scored

numerically for each view-field on a scale of 1 to 9. 0 denotes no inflammation; 1–3 scant cells but

not forming a defined layer; 4–6, 1–3 layers of cells surrounding the airway epithelium or the vessel;

and 7–9, four or more layers of cells surrounding the airway epithelium or the vessel. Blood from

each mouse was also collected by heart puncture, serum extracted and used for ELISA to determine

systemic inflammatory responses using RANTES as a marker, as per the manufacturer’s specifications

(RANTES, RayBiotech Inc).
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Cell viability assay
A cytotoxicity detection kit (LDH Release Assay, Roche Applied Science) was used to quantitatively

assess cell death on the basis of the amount of LDH (lactate dehydrogenase) released into the

medium upon plasma membrane damage. The LDH assay was carried out as previously (Hu et al.,

2013) according to the manufacturer’s instructions.

Statistical analysis
All quantitative data in this study represent the mean value ± SEM for n � 3 (number of experi-

ments). Significance levels were determined by ANOVA (GraphPad Prism 6).
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